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An efficient palladium-catalyzed two-step protocol for the synthesis of Baylis–Hillman adducts of acryl-
amide was developed. The method involved the preparation of Baylis–Hillman adducts of acrylonitrile
and a Pd-catalyzed hydration of nitrile with acetaldoxime.
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The Baylis–Hillman reaction, which involves the coupling of
activated vinylic systems with electrophiles under the catalytic
influence of a tertiary amine, gives rise to adducts, so called Bay-
lis–Hillman adducts, with a new stereocenter and has proven to
be a very useful carbon–carbon bond-forming method in the syn-
thesis of highly functionalized molecules.1

As the activated vinyl compounds, various compounds have
been used in the Baylis–Hillman reaction including acrylates, acry-
lonitrile, vinyl ketones, vinyl sulfones, and acrylamides.1 However,
among the activated vinyl compounds acrylamide has not been
used much for the synthesis of the corresponding Baylis–Hillman
adducts due to its sluggish reactivity.1–3 The use of polar solvent
in combination with 1.0 equiv of amine catalyst2a–e or expensive
catalyst2c,d,f showed marginal success. In addition, most of the con-
ditions can be applied to only reactive aldehydes like 4-nitrobenz-
aldehyde and pyridine 2-carboxaldehyde.2b,c As an example, the
yield of Baylis–Hillman adducts of p-anisaldehyde and acrylamide
remained maximum 21% up to date.2a An enzymatic hydration of
Baylis–Hillman adduct of acrylonitrile to the corresponding amide
derivative has been examined;4 however, an efficient access to
Baylis–Hillman adducts of acrylamide is highly required based on
the usefulness of these compounds in organic synthesis.5

The hydration of nitriles to the corresponding amides is very
important in view of its broad industrial and pharmacological
applications.6–8 Hydrolysis of amides to carboxylic acids is a seri-
ll rights reserved.
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ous problem in many cases under the conventional hydration con-
ditions.7 Some useful methods for the selective hydration of nitrile
to amide have been developed including the use of TFA/H2SO4

7a or
the use of H2O2/K2CO3/DMSO at low temperature.7b Recently, tran-
sition metal-catalyzed selective hydration of nitriles has also been
reported involving the use of Rh,8a,b Pt,8c,d Ru,8e–h Ir,8i Mo,8j and
Co.8k,l Very recently, we reported an efficient Pd-catalyzed hydra-
tion method of nitriles to amides with the aid of acetaldoxime
(Scheme 1).9 In these contexts, synthesis of Baylis–Hillman
adducts of acrylamide could be realized in high yields via the indi-
rect way combining the synthesis of Baylis–Hillman adducts of
acrylonitrile and the following conversion of nitrile into amide
functionality.

Thus we examined the feasibility for the synthesis of 2a from 1a
under Pd-catalyzed hydration conditions using acetaldoxime.9 For-
tunately, compound 2a was obtained in high yield (81%) as shown
in Scheme 2.10 As a comparison experiment, we examined the
hydration of 1a under different conditions including the use of
MeOH/H2SO4,5f TFA/H2SO4,5a,b,7a and H2O2/K2CO3/DMSO.7b Treat-
ment of 1a with MeOH/H2SO4 (rt to 50 �C) showed the formation
of rearranged alcohol 4, methoxy derivative 6, and dimeric ether
compound 7 in variable yields (see Fig. 1). We did not observe the
formation of any trace amounts of 2a. The use of TFA/H2SO4

5a,b,7a

showed the formation intractable complex mixtures and we did
not observe the formation of 2a again. The use of H2O2/K2CO3 in
aqueous DMSO showed sluggish reactivity and we observed the
formation of compound 2a in trace amounts. However we could
not improve the conditions. The use of FeCl3/AcOH (reflux)5g
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Table 1
Pd-catalyzed hydration of Baylis–Hillman nitrile to the corresponding amide derivatives
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Table 1 (continued)

Entry Nitrile 1 Conditionsa (h) Amide 2 (%)
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aConditions: Nitrile (1.0 mmol), Pd(OAc)2 (10 mol %), PPh3 (20 mol %), and CH3CH@NOH (2.0 equiv), aq EtOH, reflux.
bOxime ether 3 (3%) was isolated as a syn/anti (1:1) mixture.
cTrace amounts of starting materials were recovered (5–8%).
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showed the formation of rearranged acetate 5 and intractable polar
side products.

Encouraged by the results, we prepared various Baylis–Hillman
adducts of acrylonitrile 1b–k according to the known method1 in
good to high yields (69–98%). Pd-catalyzed hydration of 1b–k
was carried out under the influence of Pd(OAc)2 (10 mol %), PPh3

(20 mol %), and CH3CH@NOH (2.0 equiv) in refluxing aqueous EtOH
for 3–5 h, and the results are summarized in Table 1.

As shown in Table 1, the yields of amides 2b–k were good to
high in all cases (60–84%) including the Baylis–Hillman adducts
of 4-methoxy (entry 4, 71%), 2-methoxy (entry 5, 77%), and 3-pyr-
idyl (entry 9, 75%). It is interesting to note that the yield of 4-meth-
oxy derivative 2d reached 71%. This compound was synthesized in
a very low yield (21%) via the direct Baylis–Hillman reaction ap-
proach with acrylamide (vide supra).2a In addition, the reaction
of 3-pyridyl derivative 1i under the same reaction conditions pro-
vided 2i in 75% yield. Synthesis of this compound failed completely
by the Baylis–Hillman reaction of acrylamide and pyridine-3-
carboxaldehyde.2b,11

The Baylis–Hillman adducts of aliphatic aldehyde (entry 8) and
isatin (entry 11) showed the same reactivity. Cinnamonitrile deriv-
ative 1l (entry 12), prepared from Baylis–Hillman adduct produced
the corresponding amide 2l in 92%. It is interesting to note that
oxime ether derivative 3 was isolated as a side product (3%, see
Scheme 2) in the reaction of m-methyl derivative 1f (entry 6). This
compound must be formed from the product 2f by further reaction
with acetaldoxime. The yield of 3 was increased up to 9% when we
ran the reaction of 1f with 5.0 equiv of acetaldoxime. This type of
side product was observed in other cases also in trace amounts,
but we did not isolate them in most cases. Starting material re-
mained in some cases even after 3–5 h (5–8% for entries 6–9 and
11); however, when we allowed the reaction mixture to run for a
longer time the amount of side product 3 increased.

In summary, we developed an efficient palladium-catalyzed
two-step protocol for the synthesis of Baylis–Hillman adducts of
acrylamide. The method involved the preparation of Baylis–Hill-
man adducts of acrylonitrile and the following Pd-catalyzed hydra-
tion of nitrile with acetaldoxime.
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